A $p$-th Yamabe equation on graph

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Yamabe Equation with Rough Potentials

We study the existence of non–trivial solutions to the Yamabe equation: −∆u+ a(x) = μu|u| 4 n−2 μ > 0, x ∈ Ω ⊂ R with n ≥ 4, u(x) = 0 on ∂Ω under weak regularity assumptions on the potential a(x). More precisely in dimension n ≥ 5 we assume that: (1) a(x) belongs to the Lorentz space L n 2 (Ω) for some 1 ≤ d < ∞, (2) a(x) ≤ M < ∞ a.e. x ∈ Ω, (3) the set {x ∈ Ω|a(x) < 0} has positive measure, (4...

متن کامل

On a Nonlinear Dirac Equation of Yamabe Type

We show a conformal spectral estimate for the Dirac operator on a non-conformally-flat Riemannian spin manifolds of dimension n ≥ 7. The estimate is a spinorial analogue to an estimate by Aubin which solved the Yamabe problem for the above manifolds. Using Hijazi’s inequality our estimate implies Aubin’s estimate. More exactly, let M be a compact manifold of dimension n ≥ 7 equipped with a Riem...

متن کامل

Stability in p-th moment for uncertain differential equation

An canonical process is stationary independent increment uncertain process whose increments are normal uncertain variables. Uncertain differential equation is a type of differential equation driven by the canonical process. This paper will give a concept of stability in p-th moment for uncertain differential equations. A sufficient and necessary condition for linear uncertain differential equat...

متن کامل

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

Blow-up Solutions for Linear Perturbations of the Yamabe Equation

For a smooth, compact Riemannian manifold (M, g) of dimension N ≥ 3, we are interested in the critical equation ∆gu+ ( N − 2 4(N − 1) Sg +εh ) u = u N+2 N−2 in M , u > 0 in M , where ∆g is the Laplace–Beltrami operator, Sg is the Scalar curvature of (M, g), h ∈ C (M), and ε is a small parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2018

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13929